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Oxidation of [It-(cod)(p-L)l2 (cod = cyclo-octa-1,5-diene; L = pz or 4-Mepz, pzH = pyrazole) using NOBF4 affords 
cationic binuclear nitrosyl adducts [Ir2(~od)2(p-L)2NOlBF4; by contrast similar reactions of [M(cod)(p-L)J2 (M = Rh or  
Ir; L = 3,5-Me2pz) yield binuclear cationic radicals [ {  M(cod)(p-L)}2+.]BF4- which in e.s.r. spectra show 
hyperfine-coupling t o  both metals consistent with delocalized mixed-valence character. 

The chemistry of rhodium(I1) has a long history; representa- 
tive complexes may be synthesized by reductive or oxidative 
routes, the latter affording principally binuclear species. 1 By 
contrast and partly as a result of the kinetic stability of ds IrIV 
and d6 IrIII, iridium(I1) has been regarded as an unusual 
oxidation state. Recently, however, we2 and others3 described 
two-centre addition of oxidizing substrates to di-iridium(1) 
complexes, giving access to d7-d7 iridium(I1) dimers which 
have been structurally characterized. We have also shown4 
using cyclic voltammetry that reversible one-electron oxida- 
tion occurs with [Ir(cod)(p-pz)12 (1) (cod = cyclo-octa-l,5- 
diene; pzH = pyrazole) and related compounds, suggesting 
that the corresponding chemical oxidation might yield novel 
isolable products. We report the synthesis of a new class of 
stable bimetallic radical cations which exhibit resolved e. s. r. 
spectra consistent with spin-delocalization over both metal 
centres M (M = Rh or Ir) in a dsd7 configuration. 

Addition to compound (1) of nitrosyl tetrafluoroborate 
(CH2C12 soln.) led to immediate darkening of the reaction 
mixture from purple-red to deep purple. Filtration followed 
by addition of E t 2 0  precipitated a product (2) which was 
obtained as purple-black, air-stable microcrystalsf from 
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Scheme 1. (5) is Rh analogue of (4). 
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t Satisfactory elemental analysis results were obtained. Spectroscopic 
data: for compound (2), n.m.r. (IH, 250 MHz, CDC13 soln.) 6 

5.74(2H,m),5.66(2H,m),4.69(2H,m),3.64(2H,m);(cod-CH*-): 
2.80 (4H, m), 2.69 (4H, m), 2.27 (8H, m); u.v./vis. (tetrahydrofuran 
soln.)A556nm, ~746dm3mol-I cm-I;forcompound(3), n.m.r. (IH, 
250 MHz, CD2Clz soln.) 6 (y-4-Mepz-H3/5): 7.48 (2H, s), 7.26 (2H, s); 
(cod-CH=): 5.65 (2H, m), 5.46 (2H, m), 4.69 (2H, m), 3.61 (2H, m); 
(cod -CH2-): 2.60 (8H, m), 2.28 (8H); (4-Me) 2.08 (6H, s); u.v./vis. 
(tetrahydrofuran soln.) h. 542 nm, E 3410 dm3 mol-1 cm-1. The X-ray 
crystal and molecular structure of compound (2), full details of which 
will be published subsequently, has been determined in this Depart- 
ment by Dr. M. J. Zaworotko, confirming the proposed geometry 
with Ir-Ir = 3.225(1) A, Ir-N = 2.06(4) 8, and LIr-N-0 = 115(5)". 

(p-p~H3'5, H4): 6 7.67 (2H, d), 7.57 (2H, d), 6.49 (2H, t); (cod-CH=): 

CH2Cl,-Et,O. The i.r. spectrum of this material contained 
strong absorptions at 1715 and 1070 cm-1 attributable to 
v(N0) and v(BF) respectively; formulation as a cationic 
di-iridium nitrosyl (Scheme 1) was substantiated by micro- 
analytical results as well as by the appearance of distinguish- 
able p-pz H3 and HS proton signals in the 1H n.m.r. spectrum. 
Using the same preparative routine, an analogue? (3) of 
compound (2) was isolated from reaction of [Ir(cod)(p-4- 
Mepz)12, but with 3,5-bridge disubstituted relatives of dimer 
(1) different behaviour was observed. 

Oxidation of [Ir(cod)( p-3,5-Me2pz)12 (4) with NOBF4 or 
NOPF6 in CH2C12 solution afforded products (4a) and (4b) as 
red-purple powders$ with i.r. spectra distinguishable only by 
v(E-F) absorption, near 1100 (E = B) or 850 cm-1 (E = P) 
respectively. Complete paramagnetic quenching of 1H n.rn.r. 
was evident in both cases and accordingly strong e.s.r. signals 
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I 

= 2.24 ?,= 2.13 

I .  

Figure 1. First derivative e.s.r. spectra of (a) compound (5a); (b) 
compound (4a), recorded as frozen solutions in CH2C12 at 77 K,  
Varian E6 e.s. r. spectrometer, calibrated with diphenylpicrylhydrazyl 
(DPPH). 1 G = 10-4 T. 

$ This preparative procedure afforded samples contaminated with ca. 
5% diamagnetic inorganic impurity, possibly residual NOBF,. Analy- 
tically pure materials were isolable however via oxidation of 
[Ir(cod)(y-3,5-R2pz)1, (R = Me or R2 = MePh) using4 [{Ir(cod)(p- 
3 , 5 - ~ , ~ 4  ,+.]BF4-, R = CF,, a synthetic route which further 
supports tke binuclear formulation for (4a) and (4b). 
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were observed, consistent with one-electron oxidation to 
[Ir(cod)( p-3,5-Me2pz)I2+* accompanied by elimination of NO 
(Scheme 1). Facile conversion of the dirhodium(1) complex 
[Rh(cod)( p-3 ,5-Me2pz)12 (5) to its corresponding radical 
cation (5a), the analogue of (4a), proved to be possible using a 
similar procedure and e.s.r. spectra for these two species are 
compared in Figure 1. Radical (5a) exhibits strongly aniso- 
tropic behaviour, with g values of 2.13 and 2.24 for the well 
separated components of a recognizably axial spectrum 
(Figure 1, a) implying metal-centred character. Hyperfine 
splitting of the parallel absorption into a triplet, a = 18 G, is 
attributable5 to spin-coupling to both rhodium nuclei (103Rh, 
loo%, I = 1/2). The spectrum of the di-iridium congener (4a) 
(Figure 1, b) is closer to isotropic but gav. at ca. 2.34 is again 
well removed from the free-electron value: metal hyperfine 
splitting is also conspicuous, a = 68 G, with a splitting pattern 
resembling the central portion of a seven-line multiplet 
derived from coupling to two nuclear spins of 3/2 (191Ir, 37%; 
193Ir, 63%: both I = 3/2). Thus in each of the dkI7 species 
(4a) and (5a) there is clear evidence for delocalization of the 
unpaired electron spin over both metal centres. 

A reduction of 0.262 8, in Rh2 separation accompany- 
ing oxidation of the d k l 8  triazenido-bridged dimer 
[Rh(CO)(PPh3)(p-RNNNR)I2 (6: R = p-tolyl) to the derived 
monocation (6a) has been reported very recently by Connelly, 
Orpen, and co-workers;6 this corresponds to electron-loss 
from a Rh2 (do*) antibonding orbital and increase in formal 
bond-order from 0 to 1/2. No hyperfine coupling could be 
detected in the e.s.r. signal (gav. 2.135) due to (6a) so that 
'trapped-valence' [ RhIRh"] character7 could not be ruled out. 
Conversely, while we have shown that the mixed-valence 
cation (4a) is a spin-delocalized system we expect no contrac- 
tion along the Irz axis because when the dimer (1) (in which 
there is evidences for significant interaction between the 
formally non-bonded Ir centres) is oxidized such a change will 
be sterically opposed by the terminal dialkene ligands.4.8 
Accordingly, Ir2 distances remain long9 even when complex 
(1) is further oxidized to d7-47 adducts (formal bond-order 1). 

With Me1 this latter process appears10 to proceed by a 
two-step nucleophilic mechanism11 in which the intermediate 
may be modelled structurally and electronically by the cationic 
species (2) and (3). 
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